Abstract

Consider n nodes {Xi}1≤i≤n independently distributed in the unit square S, each according to a distribution f. Nodes Xi and Xj are joined by an edge if the Euclidean distance d(Xi,Xj) is less than rn, the adjacency distance and the resulting random graph Gn is called a random geometric graph (RGG). We now assign a location dependent weight to each edge of Gn and define MSTn to be the sum of the weights of the minimum spanning trees of all components of Gn. For values of rn above the connectivity regime, we obtain upper and lower bound deviation estimates for MSTn and L2-convergence of MSTn appropriately scaled and centred.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.