Abstract
Tree-decompositions are the corner-stone of many dynamic programming algorithms for solving graph problems. Since the complexity of such algorithms generally depends exponentially on the width (size of the bags) of the decomposition, much work has been devoted to compute tree-decompositions with small width. However, practical algorithms computing tree-decompositions only exist for graphs with treewidth less than 4. In such graphs, the time-complexity of dynamic programming algorithms is dominated by the size (number of bags) of the tree-decompositions. It is then interesting to minimize the size of the tree-decompositions. In this extended abstract, we consider the problem of computing a tree-decomposition of a graph with width at most k and minimum size. We prove that the problem is NP-complete for any fixed k≥4 and polynomial for k≤2; for k=3, we show that it is polynomial in the class of trees and 2-connected outerplanar graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.