Abstract

We study the problem of reconfiguring s-t-separators on finite simple graphs. We consider several variants of the problem, focusing on the token sliding and jumping models. We begin with a polynomial-time algorithm that computes (if one exists) a shortest sequence of slides and another that decides if a sequence of jumps exists and outputs a witnessing sequence. We also show that deciding if a reconfiguration sequence of at most ℓ jumps exists is an NP-complete problem. To complement this result, we investigate the parameterized complexity of the natural parameterizations of the problem: by the size k of the minimum s-t-separators and by the number of jumps ℓ. We show that the problem is in FPT parameterized by k, but that it does not admit a polynomial kernel unless NP⊆coNP/poly. Our final result is a kernel with O(ℓ2) vertices and edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.