Abstract
A convex drawing of a plane graph G is a plane drawing of G, where each vertex is drawn as a point, each edge is drawn as a straight line segment and each face is drawn as a convex polygon. A maximal segment is a drawing of a maximal set of edges that form a straight line segment. A minimum-segment convex drawing of G is a convex drawing of G where the number of maximal segments is the minimum among all possible convex drawings of G. In this paper, we present a linear-time algorithm to obtain a minimum-segment convex drawing Γ of a 3-connected cubic plane graph G of n vertices, where the drawing is not a grid drawing. We also give a linear-time algorithm to obtain a convex grid drawing of G on an $(\frac{n}{2}+1)\times(\frac {n}{2}+1)$ grid with at most s n +1 maximal segments, where $s_{n}=\frac{n}{2}+3$ is the lower bound on the number of maximal segments in a convex drawing of G.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.