Abstract
ABSTRACTIn this paper, a new fault diagnosis (FD) and fault tolerant control (FTC) algorithm for a non-Gaussian nonlinear singular stochastic distribution control (SDC) system is studied. The rational square-root fuzzy logic model is used to approximate the output probability density function of non-Gaussian processes and a Takagi-Sugeno (T-S) fuzzy model is employed to transform the non-Gaussian nonlinear SDC system into a fuzzy SDC system. An adaptive fuzzy fault diagnosis observer is constructed to achieve reconstruction of system state and fault. Based on the estimated fault information, the controller is reconfigured by minimising the performance index with regard to the rational entropy subjected to mean constraint. Minimum rational entropy fault tolerant control is introduced to make the output of the past-fault SDC system still have the minimum uncertainty. Simulation results are provided to demonstrate the validity of the FD and minimum rational entropy FTC algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.