Abstract

We use a technique based on matroids to construct two nonzero patterns $Z_1$ and $Z_2$ such that the minimum rank of matrices described by $Z_1$ is less over the complex numbers than over the real numbers, and the minimum rank of matrices described by $Z_2$ is less over the real numbers than over the rational numbers. The latter example provides a counterexample to a conjecture by Arav, Hall, Koyucu, Li and Rao about rational realization of minimum rank of sign patterns. Using $Z_1$ and $Z_2$, we construct symmetric patterns, equivalent to graphs $G_1$ and $G_2$, with the analogous minimum rank properties. We also discuss issues of computational complexity related to minimum rank.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.