Abstract

The authors propose a novel minimum oscillator whereby a protein with multiple phosphorylation sites directly embedded in a negative feedback loop can exhibit oscillation. They demonstrate that if the fully phosphorylated substrate inhibits the first phosphorylation step in a cooperative manner, multisite substrates can exhibit oscillatory behaviour at the presence of a kinase and phosphatase. With a fixed number of sites, the non-linearity of the negative feedback and the substrate∕enzyme ratio must be above certain threshold values to generate undamped oscillation. There is an inverse relationship between the number of phosphorylation sites and the minimum non-linearity of the negative feedback required for oscillation; that is, the ultrasensitivity and time delay rooted in multisite phosphorylation compensate for the explicit non-linearity in the negative feedback. The period and amplitude of oscillation are mainly determined by the number of phosphorylation sites and the substrate∕enzyme ratio. The authors' results suggest that a multisite protein can be exploited for the construction of a synthetic protein oscillator featuring simplicity, robustness and tunability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.