Abstract

A minimum principle of complementary energy is established for cable networks involving only the stress components as variables with geometrical nonlinearities and nonlinear elastic materials. The minimization problem of total potential energy is reformulated as a variational problem with a convex objective functional and an infinite number of second-order cone constraints; its Fenchel dual problem is shown to coincide with the minimization problem of the complementary energy. It is of interest to note that the obtained complementary energy attains always its minimum value at the equilibrium state irrespective of the stability of the cable networks, contrary to the fact that only stationary principles have been presented for elastic trusses and continua, even in the case of a stable equilibrium state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call