Abstract

This paper studies the minimum observability of probabilistic Boolean networks (PBNs), the main objective of which is to add the fewest measurements such that an unobservable PBN becomes observable. First of all, the algebraic form of a PBN is established with the help of semi-tensor product (STP) of matrices. By combining the algebraic forms of two identical PBNs into a parallel system, a method to search the states that need to be H-distinguishable is proposed based on the robust set reachability technique. Secondly, a necessary and sufficient condition is given to find the minimum measurements such that a given set can be H-distinguishable. Moreover, by comparing the numbers of measurements for all the feasible H-distinguishable state sets, the least measurements that make the system observable are gained. Finally, an example is given to verify the validity of the obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.