Abstract

AbstractThis paper examines the problem of modelling continuous, positive data by finite mixtures of inverse Gaussian distributions using the minimum message length (MML) principle. We derive a message length expression for the inverse Gaussian distribution, and prove that the parameter estimator obtained by minimising this message length is superior to the regular maximum likelihood estimator in terms of Kullback–Leibler divergence. Experiments on real data demonstrate the potential benefits of using inverse Gaussian mixture models for modelling continuous, positive data, particularly when the data is concentrated close to the origin or exhibits a strong positive skew.KeywordsMixture ModelGaussian Mixture ModelFisher InformationPositive DataMessage LengthThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.