Abstract

Knowledge of the power spectrum of a stationary random sequence can be used for quantizing the signal efficiently and with minimum mean-squared error. A multichannel filter is used to transform the random sequence into an intermediate set of variables that are quantized using independent scalar quantizers, and then inverse-filtered, producing a quantized version of the original sequence. Equal word-length and optimal word-length quantization at high bit rates is considered. An analytical solution for the filter that minimizes the mean-squared quantization error is obtained in terms of its singular value decomposition. The performance is characterized by a set of invariants termed second-order modes, which are derived from the eigenvalue decomposition of the matrix-valued power spectrum. A more general rank-reduced model is used for decreasing distortion by introducing bias. The results are specialized to the case when the vector-valued time series is obtained from a scalar random sequence, which gives rise to a filter bank model for quantization. The asymptotic performance of such a subband coder is derived and shown to coincide with the asymptotic bound for transform coding. Quantization employing a single scalar pre- and postfilter, traditional transform coding using a square linear transformation, and subband coding in filter banks, arise as special cases of the structure analyzed here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.