Abstract

The Minimum Mass Solar Nebula (MMSN) is a protoplanetary disk that contains the minimum amount of solids necessary to build the planets of the Solar System. Assuming that the giant planets formed in the compact configuration they have at the beginning of the "Nice model", Desch (2007) built a new MMSN. He finds a decretion disk, about ten times denser than the well-known Hayashi MMSN. The disk profile is almost stationary for about ten million years. However, a planet in a protoplanetary disk migrates. In a massive, long-lived disk, this question has to be addressed. With numerical simulations, we show that the four giant planets of the Solar System could not survive in this disk. In particular, Jupiter enters the type III, runaway regime, and falls into the Sun like a stone. Known planet-planet interaction mechanisms to prevent migration, fail in this nebula, in contrast to the Hayashi MMSN. Planetary migration constrains the construction of a MMSN. We show how this should be done self-consistently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call