Abstract

In a direct data-driven approach, this paper studies the property identification (ID) problem to analyze whether an unknown linear system has a property of interest, e.g., stabilizability and structural properties. In sharp contrast to the model-based analysis, we approach it by directly using the input and state feedback data of the unknown system. Via a new concept of sufficient richness of input sectional data, we first establish the necessary and sufficient condition for the minimum input design to excite the system for property ID. Specifically, the input sectional data is sufficiently rich for property ID if and only if it spans a linear subspace that contains a property dependent minimum linear subspace, any basis of which can also be easily used to form the minimum excitation input. Interestingly, we show that many structural properties can be identified with the minimum input that is however unable to identify the explicit system model. Overall, our results rigorously quantify the advantages of the direct data-driven analysis over the model-based analysis for linear systems in terms of data efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.