Abstract

The high-level contribution of this paper is to establish benchmarks for the minimum hop count per source-receiver path and the minimum number of edges per tree for multicast routing in mobile ad hoc networks (MANETs) and explore the tradeoffs between these two routing strategies with respect to hop count, number of edges and lifetime per multicast tree. Accordingly, we consider two categories of algorithms – Breadth First Search (for minimum hop trees) and minimum Steiner tree heuristic (for minimum edge trees). Extensive simulations of these two algorithms on centralized snapshots of the MANET topology, sampled for every 0.25 seconds, have been conducted for 1000 seconds under two different conditions of network density and three different multicast group sizes. Simulation results illustrate that minimum edge trees have 20-160% larger lifetime than the minimum hop trees. The tradeoff is that the minimum edge trees have 20-100% larger hop count per source-receiver path compared to the minimum hop trees. Similarly, the minimum hop trees have 13-35% more edges than the minimum edge trees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call