Abstract
Hausdorff distance between two compact sets, defined as the maximum distance from a point of one set to another set, has many application in computer science. It is a good measure for the similarity of two sets. This paper proves that the shape distance between two compact sets in Rn defined by minimum Hausdorff distance under rigid motions is a distance. The authors introduce similarity comparison problems in protein science, and propose that this measure may have good application to comparison of protein structure as well. For calculation of this distance, the authors give one dimensional formulas for problems (2, n), (3, 3), and (3, 4). These formulas can reduce time needed for solving these problems. The authors did some numerical experiments for (2, n). On these sets of data, this formula can reduce time needed to one fifteenth of the best algorithms known on average. As n increases, it would save more time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.