Abstract

We consider the motion of a spacecraft described by the differential equations of the three-body problem in the Earth-Moon system. The goal is to stabilize the spacecraft in the neighborhood of the collinear Lagrangian points (which are know to be unstable equilibria) via use of minimum fuel-consumption control. The adopted approach is based on l1-optimization of linearized and discretized equations with terminal conditions being the target Lagrangian point. Therefore, the problem reduces to a linear program, and its solution defines pulse controls for the original three-body equations. Upon reaching the desired neighborhood, the spacecraft performs control-free flight until its deviation from the Lagrangian point exceeds certain prespecified threshold. The correction is then applied repeatedly, so that the spacecraft is kept within a small neighborhood of the unstable equilibrium point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.