Abstract
Clustering is the problem of identifying the distribution of patterns and intrinsic correlations in large data sets by partitioning the data points into similarity classes. In this paper, we study on the problem of clustering categorical data, where data objects are made up of non-numerical attributes. We propose MECC (Minimum Error Classification Clustering), an alternative technique for categorical data clustering using VPRS taking into account minimum error classification. The technique is implemented in MATLAB. Experimental results on two benchmark UCI datasets show that MECC technique is better than the baseline categorical data clustering techniques with respect to selecting the clustering attribute.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Software Engineering and Its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.