Abstract

In this work, we apply the rate-based model of Taylor and Krishna to describe the separation of air in a low-pressure, packed distillation column. By use of numerical optimization, we identify the temperature profile for heat exchange with the column and its surroundings that minimizes the total entropy production. Optimal operation of the column reduces the entropy production by nearly 50%, and the total heating- and cooling duties by 30% and 50%, respectively. We find that the local entropy production is more uniform for the optimal solution than in the adiabatic column, a property that may be helpful for new designs. Using the equilibrium stage model, the state of minimum entropy production has higher cooling/heating duties than in the rate-based model case. This shows that more sophisticated models can be beneficial for the development of reliable strategies to improve the energy efficiency of distillation columns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.