Abstract

Minimum-energy synchronization control for interconnected networks is addressed, where network topologies contain leaderless and leader-follower structures and information transmission of the whole network is non-periodically silent. The key characteristic of the current work is that the total energy consumption is minimum in the sense of the linear matrix inequality, while both the guaranteed-cost synchronization and the limited-budget synchronization cannot make the total energy consumption be minimum. Firstly, the leaderless minimum-energy synchronization achievement problem is transformed into the asymptotic stabilization problem by the state decoupling strategy, and sufficient conditions of leaderless minimum-energy synchronization are presented by the Lyapunov-based method. Especially, those conditions can be solved by the generalized eigenvalue approach on the basis of the linear matrix inequality. Then, main results of leaderless minimum-energy synchronization are expanded to leader-follower interconnected networks, where the key challenge is that these networks are nonsymmetrical. Finally, two numerical examples are illustrated to verify main results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.