Abstract

Field-programmable gate arrays (FPGAs) are an attractive option for low-power systems requiring flexible computing resources. However, the lowest power systems have yet to adopt FPGAs. Subthreshold circuit operation offers the opportunity to operate FPGAs at their minimum energy point. This paper presents data measured from an FPGA test chip fabricated in a 0.18-μm SOI process. It is shown that the test chip can function at supply voltages as low as 0.26 V without an extra supply for write assists by using latches for configuration bit storage instead of static random access memory. Investigation of the minimum energy point of the FPGA for a high-activity test pattern shows that the minimum energy point of the FPGA can be well below the threshold voltage of the transistors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.