Abstract
In this paper, we propose to address the energy efficient routing problem in multi-hop wireless networks with accumulative relay. In the accumulative relay model, partially overheard signals of previous transmissions for the same packet are used to decode it using a maximal ratio combiner technique [J.G. Proakis, 2001]. Therefore, additional energy saving can be achieved over traditional energy efficient routing. The idea of accumulative relay originates from the study of relay channel in information theory with a main focus on network capacity. It has been independently applied to minimum-energy broadcasting in L.G. Manish Agrawal et al. (2004), I. Maric and R. Yates (2002). We formulate the minimum energy accumulative routing problem (MEAR) and study it. We obtain hardness of approximation results counterbalanced with good heuristic solutions which we validate using simulations. Without energy accumulation, the classic shortest path (SP) algorithm finds the minimum energy path for a source-destination pair. However, we show that with energy accumulation, the SP can be arbitrarily bad. We turn our attention to heuristics and show that any optimal solution of MEAR can be converted to a canonical form - wave path. Armed with this insight, we develop a polynomial time heuristic to efficiently search over the space of all wavepaths. Simulation results show that our heuristic can provide more than 30% energy saving over minimum energy routing without accumulative relay. We also discuss the implementation issues of such a scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.