Abstract

PurposeThis study aims to design a controller which can improve the end-effector low-frequency chattering resulting from the measurement noise and the time delay in the on-orbit tasks. The rendezvous point will move along the rendezvous ring owing to the error of the camera, and the manipulators’ collision need be avoided. In addition, owing to the dynamics coupling, the manipulators’ motion will disturb the spacecraft, and the low tracking accuracy of the end-effector needs to be improved.Design/methodology/approachThis paper proposes a minimum disturbance controller based on the synchronous and adaptive acceleration planning to improve the tracking error and the disturbance energy. The synchronous and adaptive acceleration planning method plans the optimal rendezvous point and designs synchronous approaching method and provides an estimation method of the rendezvous point acceleration. A minimum disturbance controller is designed based on the energy conservation to optimize the disturbance resulting from the manipulator’s motion.FindingsThe acceleration planning method avoids the collision of two end-effectors and reduces the error caused by the low-frequency chattering. The minimum disturbance controller minimizes the disturbance energy of the manipulators’ motion transferred to the spacecraft. Experiment results show that the proposed method improves the low-frequency chattering, and the average position tracking error reduces by 30%, and disturbance energy reduces by 30% at least. In addition, it has good performances in the synchronous motion and adaptive tracking.Originality/valueGiven the immeasurability of the target satellite acceleration in space, this paper proposes an estimation method of the acceleration. This paper proposes a synchronous and adaptive acceleration planning method. In addition, the rendezvous points are optimized to avoid the two end-effectors collisions. By the energy conservation, the minimum disturbance controller is designed to ensure a satisfying tracking error and reduce the disturbance energy resulting from the manipulators’ motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.