Abstract

This paper introduces the notion of minimum distortion point tracking (MDPT): a control paradigm for input- or output-parallel connected dc-dc converters where switching waveforms are optimally phase shifted to minimize the total dc-bus ripple power. In a sense, MDPT generalizes the ubiquitous concept of interleaving in balanced multiphase dc-dc converters to a broad class of asymmetric input- or output-parallel connected dc-dc converters. Realizing power-quality improvement with control design implies that a drastic reduction in passive input or output filters can be achieved. This paper presents the mathematical characterization of the minimum distortion point (MDP) and a technique for MDPT. An experimental case study for three 600 W dc-dc converters demonstrates a 3× reduction in the bus voltage ripple, convergence to a static MDP in 40 ms, and the ability to dynamically track a time-varying MDP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.