Abstract

This paper discusses a class of tests of lack-of-fit of a parametric regression model when design is non-random and uniform on [0,1]. These tests are based on certain minimized distances between a nonparametric regression function estimator and the parametric model being fitted. We investigate asymptotic null distributions of the proposed tests, their consistency and asymptotic power against a large class of fixed and sequences of local nonparametric alternatives, respectively. The best fitted parameter estimate is seen to be n 1/2-consistent and asymptotically normal. A crucial result needed for proving these results is a central limit lemma for weighted degenerate U statistics where the weights are arrays of some non-random real numbers. This result is of an independent interest and an extension of a result of Hall for non-weighted degenerate U statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.