Abstract
For s≥3 a graph is K1,s-free if it does not contain an induced subgraph isomorphic to K1,s. Cycles in K1,3-free graphs, called claw-free graphs, have been well studied. In this paper we extend results on disjoint cycles in claw-free graphs satisfying certain minimum degree conditions to K1,s-free graphs, normally called generalized claw-free graphs. In particular, we prove that if G is K1,s-free of sufficiently large order n=3k with δ(G)≥n/2+c for some constant c=c(s), then G contains k disjoint triangles. Analogous results with the complete graph K3 replaced by a complete graph Km for m≥3 will be proved. Also, the existence of 2-factors for K1,s-free graphs with minimum degree conditions will be shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.