Abstract
In this paper we study the cycle base structures of embedded graphs on surfaces. We first give a sufficient and necessary condition for a set of facial cycles to be contained in a minimum cycle base (or MCB in short) and then set up a 1–1 correspondence between the set of MCBs and the set of collections of nonseparating cycles which are in general positions on surfaces and are of shortest total length. This provides a way to enumerate MCBs in a graph via nonseparating cycles. In particular, some known results such as P.F. Stadler's work on Halin graphs [Minimum cycle bases of Halin graphs, J. Graph Theory 43 (2003) 150–155] and Leydold and Stadler's results on outer-planar graphs [Minimum cycle bases of outerplanar graphs, Electronic J. Combin. 5(16) (1998) 14] are concluded. As applications, the number of MCBs in some types of graphs embedded in lower surfaces (with arbitrarily high genera) is found. Finally, we present an interpolation theorem for the number of one-sided cycles contained in MCB of an embedded graph.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.