Abstract

Bovine tuberculosis (bTB) outbreaks in US cattle herds, while rare, are expensive to control. A stochastic model for bTB control in US cattle herds was adapted to more accurately represent cow–calf herd dynamics and was validated by comparison to 2 reported outbreaks. Control cost calculations were added to the model, which was then optimized to minimize costs for either the farm or the government. The results of the optimization showed that test-and-removal costs were minimized for both farms and the government if only 2 negative whole-herd tests were required to declare a herd free of infection, with a 2–3 month testing interval. However, the optimal testing interval for governments was increased to 2–4 months if the model was constrained to reject control programs leading to an infected herd being declared free of infection. Although farms always preferred test-and-removal to depopulation from a cost standpoint, government costs were lower with depopulation more than half the time in 2 of 8 regions. Global sensitivity analysis showed that indemnity costs were significantly associated with a rise in the cost to the government, and that low replacement rates were responsible for the long time to detection predicted by the model, but that improving the sensitivity of slaughterhouse screening and the probability that a slaughtered animal's herd of origin can be identified would result in faster detection times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.