Abstract
A minimum cost maximum flow algorithm is proposed for resources(e.g. virtual machines) placement in clouds confronted to dynamic workloads and flows variations. The algorithm is compared to an exact method generalizing the classical Bin-Packing formulation using a linear integer program. A directed graph is used to model the allocation problem for cloud resources organized in a finite number of resource types; a common practice in cloud services. Providers can use the minimum cost maximum flow algorithm to opportunistically select the most appropriate physical resources to serve applications or to ensure elastic platform provisioning. The modified Bin-Packing algorithm is used to benchmark the minimum cost maximum flow solution. The latter combined with a prediction mechanism to handle dynamic variations achieves near optimal performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.