Abstract
Many cloud service providers (CSPs) provide data storage services with datacenters distributed worldwide. These datacenters provide different get/put latencies and unit prices for resource utilization and reservation. Thus, when selecting different CSPs’ datacenters, cloud customers of globally distributed applications (e.g., online social networks) face two challenges: 1) how to allocate data to worldwide datacenters to satisfy application service level objective (SLO) requirements, including both data retrieval latency and availability and2) how to allocate data and reserve resources in datacenters belonging to different CSPs to minimize the payment cost. To handle these challenges, we first model the cost minimization problem under SLO constraints using the integer programming. Due to its NP-hardness, we then introduce our heuristic solution, including a dominant-cost-based data allocation algorithm and an optimal resource reservation algorithm. We further propose three enhancement methods to reduce the payment cost and service latency: 1) coefficient-based data reallocation; 2) multicast-based data transferring; and 3) request redirection-based congestion control. We finally introduce an infrastructure to enable the conduction of the algorithms. Our trace-driven experiments on a supercomputing cluster and on real clouds (i.e., Amazon S3, Windows Azure Storage, and Google Cloud Storage) show the effectiveness of our algorithms for SLO guaranteed services and customer cost minimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.