Abstract
The purpose of this paper is to discuss conjugate points in symmetric spaces. Although the results are neither surprising nor altogether unknown, the author does not know of their explicit occurrence in the literature.Briefly, conjugate points in the tangent bundle to the tangent space at a point of a symmetric space are characterized in terms of the algebraic structure of the symmetric space. It is then shown that in the simply connected case the first conjugate locus coincides with the minimum (cut) locus. The interest in this last fact lies in its identification of a more or less locally and analytically defined set with one which includes all the topological interest of the space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.