Abstract

Nanodiscs are a relatively new class of nanoparticles composed of amphiphilic α-helical scaffold peptides and a phospholipid bilayer, and find potential applications in various fields. In order to identify the minimum number of amino acid residues of an amphiphilic α-helical peptide that leads to nanodisc formation, seven peptides differing in lengths (22-, 18-, 14-, 12-, 10-, 8-, and 6-mers) that mimic and modify the C-terminal domain of apoA-I (residues 220-241) were synthesized. At a concentration of 0.3 mM, the 6- and 8-mer peptides did not present any surface activity. In case of the 10-mer peptide, the aqueous surface tension initially decreased and reached a constant value of 51.9 mN/m with the 14-, 18-, and 22-mer peptides. Moreover, upon mixing the surface-active peptides (14-, 18-, and 22-mers) with dipalmitoylphosphatidylcholine (DMPC) liposomes (2.5:1, peptide : DMPC), the turbid DMPC liposome solution rapidly became transparent. Further analysis of this solution by negative-stain transmission electron microscopy (NS-TEM) indicated the presence of disk-like nanostructures. The average diameter of the nanodiscs formed was 9.5 ± 2.7 nm for the 22-mer, 8.1 ± 2.7 nm for the 18-mer, and 25.5 ± 8.5 nm for the 14-mer peptides. These results clearly demonstrate that the surface properties of peptides play a critical role in nanodisc formation. Furthermore, the minimum length of an amphiphilic peptide from the C-terminal of apoA-I protein that can lead to nanodisc formation is 14 amino acid residues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.