Abstract

We present numerical methods to solve optimization problems on the space of convex functions or among convex bodies. Hence convexity is a constraint on the admissible objects, whereas the functionals are not required to be convex. To deal with this, our method mixes geometrical and numerical algorithms. We give several applications arising from classical problems in geometry and analysis: Alexandrov's problem of finding a convex body of prescribed surface function; Cheeger's problem of a subdomain minimizing the ratio surface area on volume; Newton's problem of the body of minimal resistance. In particular for the latter application, the minimizers are still unknown, except in some particular classes. We give approximate solutions better than the theoretical known ones, hence demonstrating that the minimizers do not belong to these classes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.