Abstract
We minimize average transmit power with finite-rate feedback for coherent communications in a wireless sensor network (WSN), where sensors communicate with a fusion center using adaptive modulation and coding over a wireless fading channel. By viewing the coherent WSN setup as a distributed space-time multiple-input single-output (MISO) system, we present optimal distributed beamforming and resource allocation strategies when the full (F-) channel state information at the transmitters (CSIT) is available through a feedback channel. We also develop optimal adaptive transmission policies and design optimal quantizers for the finite-rate feedback case where the sensors only have quantized (Q-) CSIT, or, each sensor has F-CSIT of its own link with the FC but only Q-CSIT of other sensors. Numerical results confirm that our novel finite-rate feedback-based strategies achieve near-optimal power savings based on even a small number of feedback bits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.