Abstract

To ensure the competitiveness of manufacturing companies in the market, batching and batch scheduling are among the most important tasks. This paper presents a simulation-optimization approach that combines the discrete event simulation (DES) and the genetic algorithm (GA) to solve the batching and batch scheduling problem in a hybrid flow shop (HFS). HFS is widely used for the production of medium and large quantities of different technologically complex products. Based on a real-world manufacturing company, the HFS simulation model was developed using the Tecnomatix Plant Simulation software package. By analysing the influencing factors that represent production costs, a new formulation of the total cost of production was proposed. The purpose of this case study was to ensure timely delivery and minimize production costs by integrating simulation and optimization tools. This research considers sequence-dependent setup times, and availability of manufacturing and transportation equipment. The results of this research showed that the proposed simulation-optimization approach can be applied to solve the problem in many industrial case studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call