Abstract

In this paper, a discrete particle swarm optimization (DPSO) algorithm is presented to solve the single machine total earliness and tardiness penalties with a common due date. A modified version of HRM heuristic presented by Hino et al. in [1], here we call it MHRM, is also presented to solve the problem. In addition, the DPSO algorithm is hybridized with the iterated local search (ILS) algorithm to further improve the solution quality. The performance of the proposed DPSO algorithm is tested on 280 benchmark instances ranging from 10 to 1000 jobs from the OR Library. The computational experiments showed that the proposed DPSO algorithm has generated better results, in terms of both percentage relative deviations from the upper bounds in Biskup and Feldmann and computational time, than Hino et al. [1].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.