Abstract
This paper deals with the total tardiness minimization problem in a parallel machines manufacturing environment where tool change operations have to be scheduled along with jobs. The mentioned issue belongs to the family of scheduling problems under deterministic machine availability restrictions. A new model that considers the effects of the tool wear on the quality characteristics of the worked product is proposed. Since no mathematical programming-based approach has been developed by literature so far, two distinct mixed integer linear programming models, able to schedule jobs as well as tool change activities along the provided production horizon, have been devised. The former is an adaptation of a well-known model presented by the relevant literature for the single machine scheduling problem with tool changes. The latter has been specifically developed for the issue at hand. After a theoretical analysis aimed at revealing the differences between the proposed mathematical models in terms of computational complexity, an extensive experimental campaign has been fulfilled to assess performances of the proposed methods under the CPU time viewpoint. Obtained results have been statistically analyzed through a properly arranged ANOVA analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Industrial Engineering Computations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.