Abstract

We have succeeded to modulated the degradation rate of poly(l-lactide) (PLLA) melt-spun multifilament fibers to extend the service lifetime and increase the resorption rate by using random copolymers of l-lactide and trimethylene carbonate (TMC). The presence of TMC units enabled an overall longer service lifetime but faster degradation kinetics than PLLA. By increasing the amount of TMC up to 18 mol%, multifilament fibers characterized by a homogenous degradation profile could be achieved. Such composition allowed, once the mechanical integrity was lost, a much longer retention of mechanical integrity and a faster rate of mass loss than samples containing less TMC.The degradation profile of multifilament fibers consisting of (co)polymers containing 0, 5, 10 and 18 mol% of TMC has been identified during 45 weeks in vitro hydrolysis following the molecular weight decrease, mass loss and changes in microstructure, crystallinity and mechanical properties. The fibers degraded by a two-step, autocatalyzed bulk hydrolysis mechanism. A high rate of molecular weight decrease and negligible mass loss, with a consequent drop of the mechanical properties, was observed in the early stage of degradation for fibers having TMC content up to 10 mol%. The later stage of degradation was, for these samples, characterized by a slight increase in the mass loss and a negligible molecular weight decrease. Fibers prepared with the 18 mol% TMC copolymer showed instead a more homogenous molecular weight decrease ensuring mechanical integrity for longer time and faster mass loss during the later stage of degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.