Abstract

Let U ( n , d ) be the set of unicyclic graphs on n vertices with diameter d . In this article, we determine the unique graph with minimal least eigenvalue among all graphs in U ( n , d ) . It is found that the extremal graph is different from that for the corresponding problem on maximal eigenvalue as done by Liu et al. [H.Q. Liu, M. Lu, F. Tian, On the spectral radius of unicyclic graphs with fixed diameter, Linear Algebra Appl. 420 (2007) 449–457].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.