Abstract
Let G be a connected simple graph with order n and Laplacian matrix L(G). The Laplacian-energy-like of G is defined asLEL(G)=∑i=1nλi, where λi is the eigenvalue of L(G) for i=1,…,n. In this paper, with the aid of Ferrers diagrams of threshold graphs, we provide an algebraic combinatorial approach to determine the graphs with minimal Laplacian-energy-like among all connected graphs having n vertices and m edges, showing that the extremal graph is a special threshold graph, named as the quasi-complete graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.