Abstract

Filtration control is important to ensure safe and high efficient drilling. The aim of the current research is to explore the feasibility of using basil seed powders (BSPs) to reduce filtration loss in water-based drilling fluid. The effect of BSP concentration, thermal aging temperature, inorganic salts (NaCl and CaCl2) on the filtration properties of bentonite/basil suspensions was investigated. The filtration control mechanism of BSP was probed via water absorbency test, zeta potential measurement, particle size distribution measurement, and filter cake morphologies observation by scanning electron microscope. The incorporation of BSPs into the bentonite suspension generated acceptable rheology below 1.0 w/v%. The BSPs exhibited effective filtration control after thermal aging at 120°C, but less efficiency at 150°C. After thermal aging at 120°C, the bentonite suspension containing 1.0 w/v% BSPs could resist NaCl and CaCl2 pollution of 5.0 w/v% and 0.3 w/v% respectively. Besides general filtration control behaviors, the exceptional water retaining capability formed by numerous nanoscale 3D networks in the basil seed gum and considerable insoluble small particles in BSPs might further contribute to the filtration control. The excellent filtration properties bring basil seed a suitable and green candidate for the establishment of high-performance drilling fluids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.