Abstract

Multicore platforms are increasingly used in real-time embedded applications. In the development of such applications, an efficient use of RAM memory is as important as the effective scheduling of software tasks. Preemption Threshold Scheduling is a well-known technique for controlling the degree of preemption, possibly improving system schedulability, and allowing savings in stack space. In this paper, we target at the optimal mapping of tasks to cores and the assignment of the scheduling parameters for systems scheduled with preemption thresholds. We formulate the optimization problems using Mixed Integer Linear Programming framework, and propose an efficient heuristic as an alternative. We demonstrate the efficiency and quality of both approaches with extensive experiments using random systems as well as two industrial case studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.