Abstract

We consider a system of parallel queues where tasks are assigned (dispatched) to one of the available servers upon arrival. The dispatching decision is based on the full state information, i.e., on the sizes of the new and existing jobs. We are interested in minimizing the so-called mean slowdown criterion corresponding to the mean of the sojourn time divided by the processing time. Assuming no new jobs arrive, the shortest-processing-time-product (SPTP) schedule is known to minimize the slowdown of the existing jobs. The main contribution of this paper is three-fold: 1) To show the optimality of SPTP with respect to slowdown in a single server queue under Poisson arrivals; 2) to derive the so-called size-aware value functions for M/G/1-FIFO/LIFO/SPTP with general holding costs of which the slowdown criterion is a special case; and 3) to utilize the value functions to derive efficient dispatching policies so as to minimize the mean slowdown in a heterogeneous server system. The derived policies offer a significantly better performance than e.g., the size-aware-task-assignment with equal load (SITA-E) and least-work-left (LWL) policies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.