Abstract
The paper presents Bayesian information fusion theory in the context of neural-network model combination. It shows how confidence measures can be combined with individual model estimates to minimize risk through the fusion process. The theory is illustrated through application to the real task of quality prediction in the papermaking industry. Prediction uncertainty estimates are calculated using approximate Bayesian learning. These are incorporated into model combination as confidence measures. Cost functions in the fusion center are used to control the influence of the confidence measures and improve the performance of the resultant committee.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.