Abstract

Because of the eminent adsorptive capacity and rate for dissolved organic molecules compared to conventionally-sized powdered activated carbon (PAC), super-fine powdered activated carbon (SPAC) is gathering momentum for use in not only the pretreatment for membrane filtration for drinking water purification but also the conventional water purification process consisting of coagulation-flocculation, sedimentation, and rapid sand-filtration (CSF). However, the probability of SPAC particles to leak through a sand bed is higher than that of PAC, and their strict leakage control is an issue to be challenged when applying SPAC to CSF. However, study focusing on very high particle removal, which yield residual concentrations down to around 100 particles/mL, has been very limited. A previous study mentioned that the tendency of SPAC leakage is related to its low destabilization. In response to this, the present study focused on the two key components of coagulation (mixing intensity and coagulants) and investigated how to effectively reduce the residual SPAC after CSF.Astonishingly, the flash mixing (the first process of CSF), especially its G (velocity gradient) value, played the most important role in determining the residual SPAC in the filtrate of sand filter (the fourth process). Even if the slow mixing time was short, a sufficiently large G value but short T (mixing time) value in flash mixing effectively reduced the residual SPAC. When the total GT value of flash and slow mixing was fixed at a constant, priority should be given to flash mixing to reduce the residual SPAC.Among 23 PACl (poly-aluminum chloride) coagulants, PACl with a high-basicity (basicity 70%) and with sulfate ion (0.14 of sulfate/aluminum in molar ratio), produced by Al(OH)3-dissolution, were the most effective to reduce the residual SPAC after CSF. PACls produced by base-titration, which have been intensively investigated in previous researches, were not effective due to lack of floc-formation ability. However, their Al species composition determined by the ferron method were almost the same as those of PACl by Al(OH)3-dissolution, and their charge-neutralization capacities were higher. PACls produced by Al(OH)3-dissolution possessed both charge-neutralization and floc-formation abilities, but the former ability was more important to minimize the residual of SPAC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call