Abstract

Neuron tracing from optical image is critical in understanding brain function in diseases. A key problem is to trace discontinuous filamentary structures from noisy background, which is commonly encountered in neuronal and some medical images. Broken traces lead to cumulative topological errors, and current methods were hard to assemble various fragmentary traces for correct connection. In this paper, we propose a graph connectivity theoretical method for precise filamentary structure tracing in neuron image. First, we build the initial subgraphs of signals via a region-to-region based tracing method on CNN predicted probability. CNN technique removes noise interference, whereas its prediction for some elongated fragments is still incomplete. Second, we reformulate the global connection problem of individual or fragmented subgraphs under heuristic graph restrictions as a dynamic linear programming function via minimizing graph connectivity cost, where the connected cost of breakpoints are calculated using their probability strength via minimum cost path. Experimental results on challenging neuronal images proved that the proposed method outperformed existing methods and achieved similar results of manual tracing, even in some complex discontinuous issues. Performances on vessel images indicate the potential of the method for some other tubular objects tracing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call