Abstract

Photovoltaic solar cells based on metal halide perovskites have gained considerable attention over the past decade because of their potentially low production cost, earth-abundant raw materials, ease of fabrication and ever-increasing power conversion efficiencies of up to 25.2%. This type of solar cells offers the promise of generating electricity at a more competitive unit price than traditional fossil fuels by 2035. Nevertheless, the best research cell efficiencies are still below the theoretical limit defined by the Shockley-Queissier theory owing to the presence of non-radiative recombination losses. In this Review, we analyse the predominant pathways that contribute to non-radiative recombination losses in perovskite solar cells, and evaluate their impact on device performance. We then discuss how non-radiative recombination losses can be estimated through reliable characterization techniques, and highlight some notable advances in mitigating these losses, which hint at pathways towards defect-free perovskite solar cells. Finally, we outline directions for future work that will push the efficiency of perovskite solar cells towards the radiative limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.