Abstract

In this paper, we study polynomial time approximation schemes (PTASes) for the no-wait job shop scheduling problem with the makespan objective function. It is known that the problem is MaxSNP-hard in the case when each job is allowed to have three operations or more. We show that if each job has at most two operations, the problem admits a PTAS if the number of machines is a constant (i.e., not part of the input). If the number of machines is not a constant, we show that the problem is hard to approximate within a factor better than 5/4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.