Abstract

Signal amplification is ubiquitous in biology and engineering. Protein enzymes, such as DNA polymerases, can routinely achieve >106-fold signal increase, making them powerful tools for signal enhancement. Considerable signal amplification can also be achieved using nonenzymatic, cascaded nucleic acid strand exchange reactions. However, the practical application of such kinetically trapped circuits has so far proven difficult due to uncatalyzed leakage of the cascade. We now demonstrate that strategically positioned mismatches between circuit components can reduce unprogrammed hybridization reactions and therefore greatly diminish leakage. In consequence, we were able to synthesize a three-layer catalytic hairpin assembly cascade that could operate in a single tube and that yielded 3.7 × 104-fold signal amplification in only 4 h, a greatly improved performance relative to previous cascades. This advance should facilitate the implementation of nonenzymatic signal amplification in molecular diagnostics, as well as inform the design of a wide variety of increasingly intricate nucleic acid computation circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.