Abstract

Elastic optical networks (EON) technology in combination with space division multiplexing (SDM) is considered as having the potential to expand the transmission capacity of optical transport networks. However, inter-core crosstalk may cause serious signal impairment in a multi-core fiber (MCF) links. At the same time, scheduled lightpath demands, for which the expected setup and teardown times are known in advance, are considered as an important type of traffic demand for future networks. In this article, we develop approaches to schedule simultaneous lightpaths onto non-adjacent MCF cores so as to reduce inter-core crosstalk between these lightpaths. To this end, we first define a new metric to estimate the inter-core crosstalk jointly considering the spatial, frequency, and time domains. We then tackle the routing, spectrum, core, and time assignment (RSCTA) problem for the MCF-based EON by developing an integer linear programming (ILP) model, as well as an auxiliary graph (AG) based heuristic algorithm, which jointly optimize spectrum resource utilization and reduce the lightpath inter-core crosstalk. Simulation studies show the effectiveness of the proposed approach in terms of both performance aspects. In addition, the performance of the proposed heuristic algorithm is shown to be close to that of the ILP model in small networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call