Abstract

Recently, variable stiffness actuators (VSAs) have been introduced for reducing the input efforts of pick-and-place robots. However, the serial arrangement of springs and motors in the VSAs decreases the accuracy at high-speeds due to uncontrolled robot deflections. To ensure accuracy while reducing the input efforts, this paper proposes the use of variable stiffness springs (VSS) in parallel configuration with the motors. The parallel arrangement of VSS and motors is combined with a shooting method to adjust the stiffness of the system in order to enforce its limit cycle to converge to a desired trajectory, and, thus, to decrease the input torques. Numerical simulations of the suggested approach on a five-bar mechanism show the reduction of the robot input efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.